A 14 μA ECG Processor with Robust Heart Rate Monitor for a Wearable Healthcare System

Shintaro Izumi1, Ken Yamashita1, Masanao Nakano1, Toshihiro Konishi1, Hiroshi Kawaguchi1, Hiromitsu Kimura2, Kyoji Marumoto2, Takaaki Fuchikami2, Yoshikazu Fujimori2, Hiroshi Nakajima3, Toshikazu Shiga4, and Masahiko Yoshimoto1,5

1Kobe University, Kobe, Japan, 2Rohm Co. Ltd., Kyoto, Japan, 3Omron Corporation, Kyoto, Japan, 4Omron Healthcare Co., Ltd., Kyoto, Japan, 5JST CREST, Tokyo, Japan

E-mail: shin@godzilla.kobe-u.ac.jp

Abstract—This report describes an electrocardiograph (ECG) processor for use with a wearable healthcare system. It comprises an analog front end, a 12-bit ADC, a robust Instantaneous Heart Rate (IHR) monitor, a 32-bit Cortex-M0 core, and 64 Kbyte Ferroelectric Random Access Memory (FeRAM). The IHR monitor uses a short-term autocorrelation (STAC) algorithm to improve the heart-rate detection accuracy despite its use in noisy conditions. The ECG processor chip consumes 13.7 μA for heart rate logging application.

I. INTRODUCTION

Because of the advent of an aging society in Japan, mobile health plays an ever more prominent role [1]. Daily-life monitoring is especially important in preventing lifestyle diseases, which have rapidly increased the number of patients and elderly people requiring nursing care. Our goal is the monitoring and display of vital signals and physical activity in daily life to improve users’ quality of life and realize a smart society.

We propose an Instantaneous Heart Rate (IHR) monitoring and electrocardiograph (ECG) processor for use in a wearable healthcare system. The IHR is an important bio-signal used for heart disease detection, heart rate variation analysis [2], and exercise intensity estimation [3].

Key factors affecting wearable system usability are miniaturization and weight reduction. However, a wearable ECG monitor is sensitive to extraneous noise because its electrodes are close together. The SNR of ECG signals will be especially degraded if a user is not at rest. Consequently, a sophisticated and costly analog front end is usually required. However, the feature and purpose of our approach is digital signal processing to reduce the performance requirements of the analog portion and to minimize the overall system power consumption. The battery weight is a dominant characteristic of the wearable system. Therefore, the battery capacity and power consumption must be limited as much as possible.

II. SYSTEM DESCRIPTION AND PROCESSOR ARCHITECTURE

Fig. 1 presents an overview of the wearable healthcare system, comprising the proposed ECG processor, Near Field Communication (NFC) tag IC, and accelerometer IC. The NFC is used for program loading, individual optimization, and data retrieval from the ECG processor. Compared with Bluetooth Low Energy or ZigBee, the standby power of NFC is extremely small. The active communication energy is also consumed by a reader/writer side when using a passive NFC tag. Therefore, the proposed system uses NFC to cooperate with a Smartphone (or reader/writer).

Fig. 2 presents a block diagram showing the proposed ECG processor, which consists of an ECG sensing block, Ferroelectric Random Access Memory (FeRAM), 32-bit Cortex-M0 core, and extra interfaces. Because the frequency range of vital signals is low (less than 1 kHz), both the standby power reduction and sleep time maximization are important to minimize the total power consumption. The 64-Kbyte FeRAM is integrated as a data buffer for daily life monitoring because
the leakage current of the data buffer is dominant in the standby state.

The ECG sensing block has an analog front end (AFE), a 12-bit SAR ADC, and a robust IHR monitor. The AFE includes a 34-dB gain instrumental amplifier and a 20-dB gain amplifier. The ADC sampling rate can be set to 1 kSamples/s for ECG processing mode and 128 Samples/s for IHR monitoring mode. The robust IHR monitor is the main contribution of this study.

The operating frequency of the Cortex M0 core, which is used for an on-node vital signal processing, is 24 MHz, whereas the operating frequency of other digital blocks is 32 kHz. The slow signals in the 32-kHz domain are synchronized at the low-speed bus to the 24-MHz domain. When the Cortex M0 core is in a deep sleep state, the on-chip 24-MHz oscillator is also stopped.

The ECG sensing block has an analog front end (AFE), a 34-dB gain instrumental amplifier and a 20-dB gain amplifier. The ADC sampling rate can be set to 1 kSamples/s for ECG processing mode and 128 Samples/s for IHR monitoring mode. The robust IHR monitor is the main component of this study.

The operating frequency of the Cortex M0 core, which is used for an on-node vital signal processing, is 24 MHz, whereas the operating frequency of other digital blocks is 32 kHz. The slow signals in the 32-kHz domain are synchronized at the low-speed bus to the 24-MHz domain. When the Cortex M0 core is in a deep sleep state, the on-chip 24-MHz oscillator is also stopped.

The robust IHR monitor is the main contribution of this study.

In the equations presented above, \( F_s \), \( L_{\text{min}} \), and \( w_1 \) respectively denote the sampling rate (samples/s), the window length, and the weight coefficient. The value of \( T_{\text{shift}} \) is set as 0.25 s to 1.5 s because the heart rate of a healthy subject is 40 bpm to 240 bpm. The \( L_{\text{min}} \) is updated according to the estimated IHR to reduce the computational amount and improve the IHR estimation accuracy. Then, the range of \( L_{\text{min}} \) and \( w_1 \) is...
determined by the maximum rate of the beat-to-beat variation, which is generally 20% in a healthy subject [10].

B. Hardware implementation of the heart rate monitor

In this work, we introduce a robust IHR monitor, which employs two-step noise reduction technique. In the first stage, a quadratic spline wavelet transform (QSWT) [11] is used to mitigate the baseline wander and hum noise. The QSWT requires few calculations and low hardware cost because it can be implemented using only adders and shift operators. Fig. 5 presents a block diagram and frequency characteristics of the QSWT with 128-Hz sampling rate. The baseline wander and hum noise can be removed easily using QSWT. Unfortunately, it is difficult to remove the myoelectric noise and electrode motion artifacts only using QSWT because these frequency ranges are similar to the desired ECG signal.

Therefore, in the second stage, the IHR is extracted using the STAC method. The STAC is also implemented as dedicated hardware to minimize the power overhead. Fig. 6 presents the block diagram of the IHR monitor and STAC processing core. Each STAC core has CC buffer to store the intermediate value of $CC[T_{win}^T_1]$ in (1). The CC buffer is updated in synchronization with ADC output (see Fig. 7). Since the $T_{win}$ is 1.5 s and because IHR is updated every second, two STAC cores alternately calculate IHR with 0.5 s overlap.

The gate level simulation result shows the IHR monitor block, which contains QSWT, two STAC cores, and SRAMs, consumes 1.21 $\mu$A. The digital logic and SRAMs respectively consume 0.26 $\mu$A and 0.95 $\mu$A.

IV. IMPLEMENTATION RESULT

The test chip is fabricated using 130-nm CMOS technology. Fig. 8 presents a chip photograph and a performance summary. The operating voltage is 1.2 V for AFE, ADC, SRAM, 24-MHz oscillator, and digital blocks. The FeRAM, 32-KHz oscillator, and IO circuits are operated with 3.0 V supply voltage.

To demonstrate the test chip performance, we implemented a heart rate logging application. The experimental environment is presented in Fig. 9. In this experiment, an Android™ smartphone is used for program loading and logging data retrieval. As portrayed in Fig. 10, the IHR is extracted correctly in a noisy condition.
As presented in Fig. 12, the IHR monitor and FeRAM respectively contribute to active ratio reduction and sleep power reduction. Table I presents a performance comparison of the ECG processor. Compared with earlier ECG processors, the proposed processor has lower power and greater memory capacity for daily-life monitoring.

V. CONCLUSION

As described in this paper, we proposed a low-power ECG processor with a robust heart rate monitor. The robust heart rate monitor can correctly extract a heart rate from noisy environments using the STAC algorithm. The measured total current consumption is 13.7 μA at 1.2V and 3.0V power supply for the heart rate logging application.

REFERENCES


<table>
<thead>
<tr>
<th>TABLE I. PERFORMANCE COMPARISON WITH PREVIOUS STUDIES</th>
</tr>
</thead>
</table>

- This work: ISSCC’2012 [12] VLSI’11 [13]
- Technology: 130 nm 130 nm 180 nm
- Supply voltage: 1.2V/3.0V 0.3-0.7V 1.2V
- Frequency: 32 MHz/32 kHz 1.7 MHz-2 kHz 1 MHz
- MCU: Cortex- M0 (32 bit) 8b RISC n/a
- On chip memory: 128.75 kB 5.5 kB 46 kB
- Total power for heart rate extraction: 18.24 μW 19 μW 31.1 μW
- Total current for heart rate extraction: 13.7 μA >27 μA 25.9 μA

148